Skip to main content

Solution Architecture

This section details the technical architecture of the AI-powered multi-sensor intelligence platform that Trifork will deliver as part of the Aerotec-Trifork partnership for YPF's Unmanned Aerial Monitoring Service.

Contents

SectionDescription
ArchitecturePlatform design and component architecture
SensorsMulti-sensor integration: methane, thermal, LiDAR, GPR
AI Use Cases17 mandatory detection and monitoring capabilities
IntegrationFlightHub 2, SAP PM, SCADA, and Genetec connectivity
AlertingReal-time alerting pipeline and prioritization

Executive Summary

The Trifork AI Platform sits on top of DJI FlightHub 2, providing the multi-sensor intelligence layer that transforms raw drone data into actionable operational insights. This is not flight management - Aerotec handles autonomous operations through FlightHub 2. The platform focuses on what the data means.

Platform Concept

┌─────────────────────────────────────────────────────────────────────┐
│ ENTERPRISE INTEGRATION │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ SAP PM │ │ Genetec │ │ RTIC │ │
│ │ Work Orders │ │ Security │ │ Dashboards │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────────────┘

┌─────────────────────────────────────────────────────────────────────┐
│ TRIFORK AI PLATFORM │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ Multi-Sensor Intelligence │ │
│ │ • AI Use Cases • Event Correlation • Alerting │ │
│ └──────────────────────────────────────────────────────────────┘ │
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Inference │ │ Correlation │ │ Triton │ │
│ │ Pipeline │ │ Engine │ │ Ensemble │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────────────┘

┌─────────────────────────────────────────────────────────────────────┐
│ DATA INGESTION LAYER │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ Unified Multi-Sensor Data Pipeline │ │
│ │ • FlightHub API • Sensor Data • Geospatial │ │
│ └──────────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────────┘

┌─────────────────────────────────────────────────────────────────────┐
│ DJI FLIGHTHUB 2 │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Flight Ops │ │ Mission │ │ Media │ │
│ │ Control │ │ Planning │ │ Storage │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────────────┘

┌─────────────────────────────────────────────────────────────────────┐
│ AUTONOMOUS DRONE FLEET │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Dock 3 │ │ Matrice 4TD │ │ Matrice 400 │ │
│ │ Stations │ │ Thermal │ │ Heavy Lift │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────────────┘

Data Flow Architecture

Key Differentiator: Multi-Sensor Correlation

The platform's unique value is correlating signals across sensor modalities:

Single SensorLimitationMulti-Sensor Correlation
Methane detection300% error at wind >7 m/s+ Visual + thermal confirms source
Thermal anomalyFalse positives from sun+ Visual context eliminates false alarms
Visual leakCannot confirm substance+ Thermal + methane identifies gas vs. liquid
GPR subsurfaceAbstract data visualization+ Geospatial overlay with surface assets

Technology Stack

ComponentTechnologyRationale
Inference ServerNVIDIA TritonMulti-model ensemble orchestration
Vision AIGroundingDINO + SAM2Zero-shot detection + precise segmentation
OCR PipelineAWS RekognitionText extraction with confidence scoring
GeospatialPostGISDigital twin asset correlation
Message QueueRabbitMQ + KafkaReal-time event streaming
Time SeriesInfluxDBSensor telemetry storage

Production Proof: US Rail Yard

The platform architecture is production-proven in Trifork's autonomous rail yard monitoring deployment for a major US maintenance operator:

CapabilityProduction Performance
Detection accuracy92-98% in industrial outdoor conditions
End-to-end latency~30 minutes from mission to analytics
Coverage100-200 acres with 4 autonomous docks
OperationsNight flights with spotlight, all weather

The same GroundingDINO + SAM2 + OCR ensemble pattern, PostGIS digital twin, and micro-batch processing approach transfers directly to YPF.

Design Principles

1. AI Assists, Humans Decide

The platform provides confidence-scored recommendations, not autonomous actions:

  • Detection events include confidence levels
  • Operators review flagged anomalies
  • Escalation based on severity tiers
  • Human-in-loop for work order creation

2. Phased Accuracy Improvement

AI models improve through operational feedback:

  • Phase 1: Baseline data collection and annotation
  • Phase 2: Initial heuristics with operator validation
  • Phase 3: Correlation logic refinement
  • Phase 4: Production accuracy targets met

3. Graceful Degradation

System remains operational with partial sensor availability:

  • Individual sensor failures don't block detection
  • Reduced confidence without correlation
  • Alerts on sensor health issues
  • Manual override capabilities

SLA Compliance

RequirementPlatform Design
Raw data upload ≤10 minDirect FlightHub API integration
Analytics ≤20 minMicro-batch processing pipeline
AI availability ≥90%Redundant inference deployment
Detection accuracy ≥95%Ensemble model + operator feedback loop