Skip to main content

Rail Yard Digital Twin Case Study

Client: Major US Rail Maintenance Operator Role: Trifork served as implementation partner and AI platform developer

Project Overview

Autonomous drone monitoring system for rail yard asset inspection using DJI Dock 3 and Matrice 4D - the identical hardware stack specified in YPF's RFP.

Capability Comparison

CapabilityRail Yard DeploymentYPF Requirement
HardwareDJI Dock 3 + Matrice 4DDJI Dock 3 + Matrice 4TD/400
Flight ManagementDJI FlightHub 2DJI FlightHub 2
OperationsBVLOS under FAA waiversBVLOS under ANAC
Accuracy92-98% OCR in industrial conditions≥95% detection accuracy
Processing~30 min end-to-end≤20 min analytics
Coverage100-200 acres with 4 docksVaca Muerta facilities
OperationsNight flights with spotlight24/7 monitoring
IntegrationAPI to enterprise systemsSAP PM, SCADA

Technical Architecture

Vision AI Ensemble

┌─────────────────────────────────────────────────────────────────────┐
│ NVIDIA Triton Inference Server │
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ GroundingDINO│→│ SAM2 │→│ AWS Rekognition│ │
│ │ Detection │ │ Segmentation │ │ OCR │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
  • GroundingDINO: Zero-shot object detection with text prompts
  • SAM2: Precise segmentation for detected objects
  • AWS Rekognition: Text extraction with confidence scoring

Probabilistic OCR Reconciliation

Multi-frame consensus voting with confidence weighting:

  1. Extract text from multiple frames of same asset
  2. Weight by detection confidence
  3. Reconcile to single canonical reading
  4. Flag low-confidence for manual review

Digital Twin Storage

  • PostGIS: Geospatial asset correlation
  • Time-series: Historical tracking
  • Asset linking: Detection events correlated to physical assets

Achieved Results

| Metric | Result | | ------------------- | --------------------------------------- | --------------------------------------- | | OCR Accuracy | 92-98% in industrial outdoor conditions | | | Processing Latency | ~30 minutes end-to-end | | | False Positive Rate | <5% after correlation | | | Coverage | 100-200 acres per mission | | | Uptime | Production-level reliability |

Transferable Components

Direct Transfer to YPF

  1. Triton Ensemble Pattern - Same model orchestration
  2. PostGIS Digital Twin - Asset correlation approach
  3. Micro-batch Processing - Near-real-time pipeline
  4. Hybrid Clustering - Multi-signal data fusion
  5. FlightHub 2 Integration - API patterns

Adaptation Required

  1. Sensor Integration - Add methane, GPR, LiDAR
  2. Use Case Models - Train for oil & gas assets
  3. Correlation Logic - Multi-sensor fusion
  4. SLA Optimization - 20-min target vs. 30-min achieved

Lessons Learned

ChallengeSolutionYPF Application
Wind impact on accuracyMulti-frame consensusApply to all visual detection
Night lighting variationAdaptive exposureThermal + spotlight combination
Large asset diversityZero-shot detectionFlexible for O&G equipment
Enterprise integrationAPI-first designSAP PM connector pattern