Rail Yard Digital Twin Case Study
Client: Major US Rail Maintenance Operator Role: Trifork served as implementation partner and AI platform developer
Project Overview
Autonomous drone monitoring system for rail yard asset inspection using DJI Dock 3 and Matrice 4D - the identical hardware stack specified in YPF's RFP.
Capability Comparison
| Capability | Rail Yard Deployment | YPF Requirement |
|---|---|---|
| Hardware | DJI Dock 3 + Matrice 4D | DJI Dock 3 + Matrice 4TD/400 |
| Flight Management | DJI FlightHub 2 | DJI FlightHub 2 |
| Operations | BVLOS under FAA waivers | BVLOS under ANAC |
| Accuracy | 92-98% OCR in industrial conditions | ≥95% detection accuracy |
| Processing | ~30 min end-to-end | ≤20 min analytics |
| Coverage | 100-200 acres with 4 docks | Vaca Muerta facilities |
| Operations | Night flights with spotlight | 24/7 monitoring |
| Integration | API to enterprise systems | SAP PM, SCADA |
Technical Architecture
Vision AI Ensemble
┌─────────────────────────────────────────────────────────────────────┐
│ NVIDIA Triton Inference Server │
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ GroundingDINO│→│ SAM2 │→│ AWS Rekognition│ │
│ │ Detection │ │ Segmentation │ │ OCR │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
- GroundingDINO: Zero-shot object detection with text prompts
- SAM2: Precise segmentation for detected objects
- AWS Rekognition: Text extraction with confidence scoring
Probabilistic OCR Reconciliation
Multi-frame consensus voting with confidence weighting:
- Extract text from multiple frames of same asset
- Weight by detection confidence
- Reconcile to single canonical reading
- Flag low-confidence for manual review
Digital Twin Storage
- PostGIS: Geospatial asset correlation
- Time-series: Historical tracking
- Asset linking: Detection events correlated to physical assets
Achieved Results
| Metric | Result | | ------------------- | --------------------------------------- | --------------------------------------- | | OCR Accuracy | 92-98% in industrial outdoor conditions | | | Processing Latency | ~30 minutes end-to-end | | | False Positive Rate | <5% after correlation | | | Coverage | 100-200 acres per mission | | | Uptime | Production-level reliability |
Transferable Components
Direct Transfer to YPF
- Triton Ensemble Pattern - Same model orchestration
- PostGIS Digital Twin - Asset correlation approach
- Micro-batch Processing - Near-real-time pipeline
- Hybrid Clustering - Multi-signal data fusion
- FlightHub 2 Integration - API patterns
Adaptation Required
- Sensor Integration - Add methane, GPR, LiDAR
- Use Case Models - Train for oil & gas assets
- Correlation Logic - Multi-sensor fusion
- SLA Optimization - 20-min target vs. 30-min achieved
Lessons Learned
| Challenge | Solution | YPF Application |
|---|---|---|
| Wind impact on accuracy | Multi-frame consensus | Apply to all visual detection |
| Night lighting variation | Adaptive exposure | Thermal + spotlight combination |
| Large asset diversity | Zero-shot detection | Flexible for O&G equipment |
| Enterprise integration | API-first design | SAP PM connector pattern |